NLP

RNN及其变体

RNN、LSTM、GRU、Attention机制

Posted by 新宇 on September 11, 2020

一、RNN模型简介

1. 什么是RNN模型

RNN(Recurrent Neural Network), 中文称作循环神经网络, 它一般以序列数据为输入, 通过网络内部的结构设计有效捕捉序列之间的关系特征, 一般也是以序列形式进行输出.

以时间步对RNN进行展开后的单层网络结构:

RNN的循环机制使模型隐层上一时间步产生的结果, 能够作为当下时间步输入的一部分(当下时间步的输入除了正常的输入外还包括上一步的隐层输出)对当下时间步的输出产生影响.

2. RNN模型的作用

因为RNN结构能够很好利用序列之间的关系, 因此针对自然界具有连续性的输入序列, 如人类的语言, 语音等进行很好的处理, 广泛应用于NLP领域的各项任务, 如文本分类, 情感分析, 意图识别, 机器翻译等.

3. RNN模型的分类

  • 按照输入和输出的结构进行分类:
    • N vs N - RNN
    • N vs 1 - RNN
    • 1 vs N - RNN
    • N vs M - RNN
  • 按照RNN的内部构造进行分类:
    • 传统RNN
    • LSTM
    • Bi-LSTM
    • GRU
    • Bi-GRU

seq2seq架构最早被提出应用于机器翻译, 因为其输入输出不受限制,如今也是应用最广的RNN模型结构. 在机器翻译, 阅读理解, 文本摘要等众多领域都进行了非常多的应用实践.

二、传统RNN模型

内部结构过程演示:

# 导入工具包

>>> import torch
>>> import torch.nn as nn
>>> rnn = nn.RNN(5, 6, 1)
>>> input = torch.randn(1, 3, 5)
>>> h0 = torch.randn(1, 3, 6)
>>> output, hn = rnn(input, h0)
>>> output
tensor([[[ 0.4282, -0.8475, -0.0685, -0.4601, -0.8357,  0.1252],
         [ 0.5758, -0.2823,  0.4822, -0.4485, -0.7362,  0.0084],
         [ 0.9224, -0.7479, -0.3682, -0.5662, -0.9637,  0.4938]]],
       grad_fn=<StackBackward>)

>>> hn
tensor([[[ 0.4282, -0.8475, -0.0685, -0.4601, -0.8357,  0.1252],
         [ 0.5758, -0.2823,  0.4822, -0.4485, -0.7362,  0.0084],
         [ 0.9224, -0.7479, -0.3682, -0.5662, -0.9637,  0.4938]]],
       grad_fn=<StackBackward>)

三、LSTM模型

1. 遗忘门

  • 遗忘门结构分析:
    • 与传统RNN的内部结构计算非常相似, 首先将当前时间步输入x(t)与上一个时间步隐含状态h(t-1)拼接, 得到[x(t), h(t-1)], 然后通过一个全连接层做变换, 最后通过sigmoid函数进行激活得到f(t), 我们可以将f(t)看作是门值, 好比一扇门开合的大小程度, 门值都将作用在通过该扇门的张量, 遗忘门门值将作用的上一层的细胞状态上, 代表遗忘过去的多少信息, 又因为遗忘门门值是由x(t), h(t-1)计算得来的, 因此整个公式意味着根据当前时间步输入和上一个时间步隐含状态h(t-1)来决定遗忘多少上一层的细胞状态所携带的过往信息

2. 输入门

  • 输入门结构分析:
    • 我们看到输入门的计算公式有两个, 第一个就是产生输入门门值的公式, 它和遗忘门公式几乎相同, 区别只是在于它们之后要作用的目标上. 这个公式意味着输入信息有多少需要进行过滤. 输入门的第二个公式是与传统RNN的内部结构计算相同. 对于LSTM来讲, 它得到的是当前的细胞状态, 而不是像经典RNN一样得到的是隐含状态.

3. 细胞状态

  • 细胞状态更新分析:
    • 细胞更新的结构与计算公式非常容易理解, 这里没有全连接层, 只是将刚刚得到的遗忘门门值与上一个时间步得到的C(t-1)相乘, 再加上输入门门值与当前时间步得到的未更新C(t)相乘的结果. 最终得到更新后的C(t)作为下一个时间步输入的一部分. 整个细胞状态更新过程就是对遗忘门和输入门的应用.

4. 输出门

  • 输出门结构分析:
    • 输出门部分的公式也是两个, 第一个即是计算输出门的门值, 它和遗忘门,输入门计算方式相同. 第二个即是使用这个门值产生隐含状态h(t), 他将作用在更新后的细胞状态C(t)上, 并做tanh激活, 最终得到h(t)作为下一时间步输入的一部分. 整个输出门的过程, 就是为了产生隐含状态h(t).

5. 什么是Bi-LSTM ?

Bi-LSTM即双向LSTM, 它没有改变LSTM本身任何的内部结构, 只是将LSTM应用两次且方向不同, 再将两次得到的LSTM结果进行拼接作为最终输出.

  • Bi-LSTM结构分析:
    • 我们看到图中对”我爱中国”这句话或者叫这个输入序列, 进行了从左到右和从右到左两次LSTM处理, 将得到的结果张量进行了拼接作为最终输出. - 这种结构能够捕捉语言语法中一些特定的前置或后置特征, 增强语义关联,但是模型参数和计算复杂度也随之增加了一倍, 一般需要对语料和计算资源进行评估后决定是否使用该结构.
  • Pytorch中LSTM工具的使用:
    • 位置: 在torch.nn工具包之中, 通过torch.nn.LSTM可调用.
    • nn.LSTM类初始化主要参数解释:
    • input_size: 输入张量x中特征维度的大小.
    • hidden_size: 隐层张量h中特征维度的大小.
    • num_layers: 隐含层的数量.
    • bidirectional: 是否选择使用双向LSTM, 如果为True, 则使用; 默认不使用.
  • nn.LSTM类实例化对象主要参数解释:
    • input: 输入张量x.
    • h0: 初始化的隐层张量h.
    • c0: 初始化的细胞状态张量c.
# 定义LSTM的参数含义: (input_size, hidden_size, num_layers)

# 定义输入张量的参数含义: (sequence_length, batch_size, input_size)

# 定义隐藏层初始张量和细胞初始状态张量的参数含义:

# (num_layers * num_directions, batch_size, hidden_size)

>>> import torch.nn as nn
>>> import torch
>>> rnn = nn.LSTM(5, 6, 2)
>>> input = torch.randn(1, 3, 5)
>>> h0 = torch.randn(2, 3, 6)
>>> c0 = torch.randn(2, 3, 6)
>>> output, (hn, cn) = rnn(input, (h0, c0))
>>> output
tensor([[[ 0.0447, -0.0335,  0.1454,  0.0438,  0.0865,  0.0416],
         [ 0.0105,  0.1923,  0.5507, -0.1742,  0.1569, -0.0548],
         [-0.1186,  0.1835, -0.0022, -0.1388, -0.0877, -0.4007]]],
       grad_fn=<StackBackward>)
>>> hn
tensor([[[ 0.4647, -0.2364,  0.0645, -0.3996, -0.0500, -0.0152],
         [ 0.3852,  0.0704,  0.2103, -0.2524,  0.0243,  0.0477],
         [ 0.2571,  0.0608,  0.2322,  0.1815, -0.0513, -0.0291]],

        [[ 0.0447, -0.0335,  0.1454,  0.0438,  0.0865,  0.0416],
         [ 0.0105,  0.1923,  0.5507, -0.1742,  0.1569, -0.0548],
         [-0.1186,  0.1835, -0.0022, -0.1388, -0.0877, -0.4007]]],
       grad_fn=<StackBackward>)
>>> cn
tensor([[[ 0.8083, -0.5500,  0.1009, -0.5806, -0.0668, -0.1161],
         [ 0.7438,  0.0957,  0.5509, -0.7725,  0.0824,  0.0626],
         [ 0.3131,  0.0920,  0.8359,  0.9187, -0.4826, -0.0717]],

        [[ 0.1240, -0.0526,  0.3035,  0.1099,  0.5915,  0.0828],
         [ 0.0203,  0.8367,  0.9832, -0.4454,  0.3917, -0.1983],
         [-0.2976,  0.7764, -0.0074, -0.1965, -0.1343, -0.6683]]],
       grad_fn=<StackBackward>)
  • LSTM优势:
    • LSTM的门结构能够有效减缓长序列问题中可能出现的梯度消失或爆炸, 虽然并不能杜绝这种现象, 但在更长的序列问题上表现优于传统RNN.
  • LSTM缺点:
    • 由于内部结构相对较复杂, 因此训练效率在同等算力下较传统RNN低很多.

四、GRU模型

  • 内部结构分析:
    • 和之前分析过的LSTM中的门控一样, 首先计算更新门和重置门的门值, 分别是z(t)和r(t), 计算方法就是使用X(t)与h(t-1)拼接进行线性变换, 再经过sigmoid激活. 之后重置门门值作用在了h(t-1)上, 代表控制上一时间步传来的信息有多少可以被利用. 接着就是使用这个重置后的h(t-1)进行基本的RNN计算, 即与x(t)拼接进行线性变化, 经过tanh激活, 得到新的h(t). 最后更新门的门值会作用在新的h(t),而1-门值会作用在h(t-1)上, 随后将两者的结果相加, 得到最终的隐含状态输出h(t), 这个过程意味着更新门有能力保留之前的结果, 当门值趋于1时, 输出就是新的h(t), 而当门值趋于0时, 输出就是上一时间步的h(t-1).
  • Bi-GRU与Bi-LSTM的逻辑相同, 都是不改变其内部结构, 而是将模型应用两次且方向不同, 再将两次得到的LSTM结果进行拼接作为最终输出. 具体参见上小节中的Bi-LSTM.
  • Pytorch中GRU工具的使用:
    • 位置: 在torch.nn工具包之中, 通过torch.nn.GRU可调用.
  • nn.GRU类初始化主要参数解释:
    • input_size: 输入张量x中特征维度的大小.
    • hidden_size: 隐层张量h中特征维度的大小.
    • num_layers: 隐含层的数量.
    • bidirectional: 是否选择使用双向LSTM, 如果为True, 则使用; 默认不使用.
  • nn.GRU类实例化对象主要参数解释:
    • input: 输入张量x.
    • h0: 初始化的隐层张量h.
>>> import torch
>>> import torch.nn as nn
>>> rnn = nn.GRU(5, 6, 2)
>>> input = torch.randn(1, 3, 5)
>>> h0 = torch.randn(2, 3, 6)
>>> output, hn = rnn(input, h0)
>>> output
tensor([[[-0.2097, -2.2225,  0.6204, -0.1745, -0.1749, -0.0460],
         [-0.3820,  0.0465, -0.4798,  0.6837, -0.7894,  0.5173],
         [-0.0184, -0.2758,  1.2482,  0.5514, -0.9165, -0.6667]]],
       grad_fn=<StackBackward>)
>>> hn
tensor([[[ 0.6578, -0.4226, -0.2129, -0.3785,  0.5070,  0.4338],
         [-0.5072,  0.5948,  0.8083,  0.4618,  0.1629, -0.1591],
         [ 0.2430, -0.4981,  0.3846, -0.4252,  0.7191,  0.5420]],

        [[-0.2097, -2.2225,  0.6204, -0.1745, -0.1749, -0.0460],
         [-0.3820,  0.0465, -0.4798,  0.6837, -0.7894,  0.5173],
         [-0.0184, -0.2758,  1.2482,  0.5514, -0.9165, -0.6667]]],
       grad_fn=<StackBackward>)
  • GRU的优势:
    • GRU和LSTM作用相同, 在捕捉长序列语义关联时, 能有效抑制梯度消失或爆炸, 效果都优于传统RNN且计算复杂度相比LSTM要小.
  • GRU的缺点:
    • GRU仍然不能完全解决梯度消失问题, 同时其作用RNN的变体, 有着RNN结构本身的一大弊端, 即不可并行计算, 这在数据量和模型体量逐步增大的未来, 是RNN发展的关键瓶颈.

五、注意力机制

  • 什么是注意力:
    • 我们观察事物时,之所以能够快速判断一种事物(当然允许判断是错误的), 是因为我们大脑能够很快把注意力放在事物最具有辨识度的部分从而作出判断,而并非是从头到尾的观察一遍事物后,才能有判断结果. 正是基于这样的理论,就产生了注意力机制.
  • 什么是注意力计算规则:
    • 它需要三个指定的输入Q(query), K(key), V(value), 然后通过计算公式得到注意力的结果, 这个结果代表query在key和value作用下的注意力表示. 当输入的Q=K=V时, 称作自注意力计算规则.

# 如果参数1形状是(b × n × m), 参数2形状是(b × m × p), 则输出为(b × n × p)

>>> input = torch.randn(10, 3, 4)
>>> mat2 = torch.randn(10, 4, 5)
>>> res = torch.bmm(input, mat2)
>>> res.size()
torch.Size([10, 3, 5])
  • 什么是注意力机制
    • 注意力机制是注意力计算规则能够应用的深度学习网络的载体,同时包括一些必要的全连接层以及相关张量处理,使其与应用网络融为一体.使用自注意力计算规则的注意力机制称为自注意力机制.
    • 说明: NLP领域中, 当前的注意力机制大多数应用于seq2seq架构, 即编码器和解码器模型.
  • 注意力机制的作用
    • 在解码器端的注意力机制: 能够根据模型目标有效的聚焦编码器的输出结果, 当其作为解码器的输入时提升效果. 改善以往编码器输出是单一定长张量, 无法存储过多信息的情况.
    • 在编码器端的注意力机制: 主要解决表征问题, 相当于特征提取过程, 得到输入的注意力表示. 一般使用自注意力(self-attention).
  • 注意力机制实现步骤
    • 第一步: 根据注意力计算规则, 对Q,K,V进行相应的计算.
    • 第二步: 根据第一步采用的计算方法, 如果是拼接方法,则需要将Q与第二步的计算结果再进行拼接, 如果是转置点积, 一般是自注意力, Q与V相同, 则不需要进行与Q的拼接.
    • 第三步: 最后为了使整个attention机制按照指定尺寸输出, 使用线性层作用在第二步的结果上做一个线性变换, 得到最终对Q的注意力表示.
import torch
import torch.nn as nn
import torch.nn.functional as F

class Attn(nn.Module):
    def __init__(self, query_size, key_size, value_size1, value_size2, output_size):
        """初始化函数中的参数有5个, query_size代表query的最后一维大小
           key_size代表key的最后一维大小, value_size1代表value的导数第二维大小, 
           value = (1, value_size1, value_size2)
           value_size2代表value的倒数第一维大小, output_size输出的最后一维大小"""

        super(Attn, self).__init__()
        # 将以下参数传入类中

        self.query_size = query_size
        self.key_size = key_size
        self.value_size1 = value_size1
        self.value_size2 = value_size2
        self.output_size = output_size

        # 初始化注意力机制实现第一步中需要的线性层.

        self.attn = nn.Linear(self.query_size + self.key_size, value_size1)

        # 初始化注意力机制实现第三步中需要的线性层.

        self.attn_combine = nn.Linear(self.query_size + value_size2, output_size)


    def forward(self, Q, K, V):
        """forward函数的输入参数有三个, 分别是Q, K, V, 根据模型训练常识, 输入给Attion机制的
           张量一般情况都是三维张量, 因此这里也假设Q, K, V都是三维张量"""

        # 第一步, 按照计算规则进行计算, 

        # 我们采用常见的第一种计算规则

        # 将Q,K进行纵轴拼接, 做一次线性变化, 最后使用softmax处理获得结果

        attn_weights = F.softmax(
            self.attn(torch.cat((Q[0], K[0]), 1)), dim=1)

        # 然后进行第一步的后半部分, 将得到的权重矩阵与V做矩阵乘法计算, 

        # 当二者都是三维张量且第一维代表为batch条数时, 则做bmm运算

        attn_applied = torch.bmm(attn_weights.unsqueeze(0), V)

        # 之后进行第二步, 通过取[0]是用来降维, 根据第一步采用的计算方法,

        # 需要将Q与第一步的计算结果再进行拼接

        output = torch.cat((Q[0], attn_applied[0]), 1)

        # 最后是第三步, 使用线性层作用在第三步的结果上做一个线性变换并扩展维度,得到输出
        
        # 因为要保证输出也是三维张量, 因此使用unsqueeze(0)扩展维度

        output = self.attn_combine(output).unsqueeze(0)
        return output, attn_weights